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A calculation of  the nonstationary temperature of  one-dimensional thermal sensors washed by a laminar 

water f low is performed on the basis of a numerical one-dimensional conjugate scheme. Results of the 

calculation are compared with experimental data for sensors of different thickness and different material. 

In a number of literature sources, in particular, in [1 ], special attention is given to the necessity of solving 

conjugate problems when studying convective heat transfer. Despite the fact that this approach does not, as a rule, 

reveal the physical laws of the process, it makes the search for them substantially easier owing to the possibility 

of tracing the influence of individual physical parameters and combinations of them on the process. The drawbacks 

of a general approach to solving conjugate problems are well known: the necessity of solving a system of differential 

equations (of energy, motion, and continuity) in a three-dimensional statement simultaneously for a liquid and a 

solid, a large number of nodes in the spatial grid in a numerical solution, the complexity of describing the geometry, 

and "closure" of the system of equations on the basis of a turbulence hypothesis for turbulent flows. 

There are undoubtedly a large number of practical cases where we need not solve the conjugate problem 

in a general statement and a two- or one-dimensional scheme will suffice. It can be assumed that this is possible 

when local heat transfer is investigated on bodies of simple geometry (a flat wall, a slot channel, etc.) on condition 

that there are no considerable velocity or temperature gradients in a direction parallel to the surface. This implies 

that 
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where y is a coordinate reckoned along the normal to the surface. 

The heat-transfer coefficient for a laminar boundary layer on a flat plate in a longitudinal flow in accord- 

ance with the exact solution is equal to [2 ] 

ax = 2 u k vx f (Pr) , 
(1) 

f ( P r ) =  exp - V r  f ~d~ d~ 
0 0 

ld(.o) , .  
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Ux = O--y ' Uy = OX " 

In particular, for Pr -- 1 the heat flux can be calculated using the equation [3 ] 
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qx = 2 (tOO -- tw) (2 )  

The value of ( d O / @ )  is presented graphically in [3 ]. If a numerical value is taken in place of (dO/d~l) , l=o and 

the last factors in (2) are represented as 
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it is obvious that expression (2) is the Fourier heat conduction equation for a thermal boundary  layer (at Pr  = 1, 

~larn = ~t), i.e., 

tOO - -  t W = ( 2 ' )  

This implies that for a s teady-state  laminar boundary layer the problem of heat t ransfer  on the surface can be 

solved in two stages: first it is necessary to determine the value of ~lam (and 6t in view of Pr) and then to calculate 

qx and a x by the simplest one-dimensional scheme. 

This solution, which is valid for a stationary flow, can be also used for a nonstat ionary thermal  regime if 

it is assumed that the quasi-stationary approach is valid. Here,  when only temperature nonstat ionari ty is involved, 

the only term that is dependent  on time in the r ight-hand side of expression (1) will be f (Pr ) .  This is connected 

with the fact that for water Pr  depends strongly on the temperature,  which changes considerably in time within 

the region of 6t- As noted in [2 ], accurate up to 2 ~ ,  for a laminar boundary layer  and Pr  = 1 

~t = pr  ~ " (4) 

As a first approximation we can calculate the Pr  number  from the wall temperature at the previous step and then 

determine the value of 6 t. 

A series of these calculations was performed for a set of one-dimensional thermal sensors different materials 

and of different thickness: for copper sensors, h = 25.10 -3, 10.10 -3, and 5- 10 -3 m, for aluminum sensors, h -- 

25.10 -3 m, 10- 10 -3 m, and for lead sensors, h = 10.10 -3 m. These thermal sensors were used in performing 

experiments in [4 ], which enables us to compare the results of numerical calculations with experiment.  Since the 

hydrodynamic  parameters were not measured in the experiments, only a qualitative comparison can be made. This 

primarily relates to the absence of measurements of the velocity ur As preliminary calculations showed, the value 

of uoo could vary within the range u~ = 0 .23-0 .27  m/sec.  In the calculations uoo = 0.25 m/sec .  

From (3) and (4) it follows that 

(4') 

The  hyd r odynamic  parameters  were mainta ined constant  in the exper iments .  Here ,  however,  some 

fluctuation of the velocity uoo (and hence of ~larn) from experiment to experiment is possible, as was already noted. 

Nevertheless, any variation in uoo is small during each experiment, and we may assume that  ~lam ~ const. 

The  calculations showed that it is impossible to attain qualitative coincidence of the experimental  and 

calculated curves tw(T), characterizing the rate of change of the sensor surface temperature  with time, if we consider 

that 6t -- const. To be more specific, coincidence of these curves was observed only on condition that  6t increase 

with t ime according to some law. From the viewpoint of theory this law is represented  by expression (4'). 

Stabilization of 6t late in the transient  process (as the temperature head decreased to 20~ enabled us to estimate 
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Fig. 1. Plots of tw('O for copper sensors: the points are the experiment: a) h 

= 5 -  10 -3 m, b) 10- 10 -3,  c) 25- 10-3; the lines are the calculation: 1, 2) h -- 

5" 10 -3 m; 3, 4) 10.10-3;  5, 6) 25 .10-3 ;  1, 3, 5) calculation according to (4'); 

2, 4, 6) calculation taking account of 6to -- O. tw, ~ 3, sec. 

the value of 6 t and since the value of Prw tends to Pr~ with time we can estimate the value of •larn. This value was 

re-introduced into the calculations, which enabled us to calculate bt from relation (4'). Calculations performed for 

the given law of variation of 6t yielded good qualitative agreement with experiment (curves 1, 3, and 5 in Figs. 1 

and 2). 

The  thermal sensors in which the rate of heating of the surface was higher (h ___ 10.10 -3 m) displayed 

particularly good agreement.  

For thermal sensors of greater  thickness (copper, aluminum, h = 25.10 -3 m) the qualitative agreement 

was unsatisfactory in the initial period (from 0 to 2.0 see). The experimental rate of heating of the surface in the 

initial period was higher than the numerical results. A possible explanation is the influence of the process of 

immersion of the experimental  specimen in the thermostat  on the relative velocity of flow along the surface and the 

value of r m and hence 6t. To take this into account, the authors prescribed the law of variation of 6t in such a 

manner  that during the initial time interval, corresponding to the time of immersion of the specimen in the thermo- 

stat (=  1 .0 -1 .5  see), r t increases from 0 to the value corresponding to (4'). The  result of a calculation for copper, 

h = 25.10 -1 m, is given in Fig. 1 (curve 6). It is seen that the experimental data are in good agreement  with the 

calculated ones, even for the instant = 1.5 sec, where there is a characteristic bend. Approximately similar results 

were obtained for an aluminum sensor 25.10 -3 m thick (Fig. 2, curve 6). The plots of tw(T) for thinner  sensors 

did not have this characteristic bend and an attempt to take into account the effect of immersion in the numerical 

calculations resulted in some excess of the calculated temperatures over the experimental ones (curves 2 in Figs. 1 

and 2). 

As an alternative explanation it can be assumed that with higher heat fluxes on the wall the time of 

formation of the thermal boundary layer increases. 

In the authors '  view it is unlikely that in the given case a nonstat ionari ty effect beyond the scope of classical 

theoret ical  concepts  was manifes ted:  first ,  the t ime interval  is too small (=  1.5 see) ,  second,  t he re  is no 

manifestation of the effect whatsoever for sensors with h < 10.10 -3 m, and third, the fact that 6 t = 0 at the initial 

instant when the specimen touches the water surface is obvious and the fact that 6 t increases to a value determined 

by (4') during some finite time is beyond question, the only problem being the duration of this time interval. But 

in any  case it is comparable  with the immersion time for the specimen and from the viewpoint of physical 

assumptions the increase in 6 t during this time is quite real. 
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Fig. 2. Plots of tw(r) for lead and aluminum sensors: the points are the 

experiment: a) lead, h = 10-10 -3 m, b) aluminum, h = 10-10 -a m, c) 

aluminum, h = 25.10 -3 m; the lines are the calculation: 1, 2) lead, 

h = 10.10 -3 m; 3, 4) a l u m i n u m ,  h = 10.10 -3 m; 5, 6) a l u m i n u m ,  

h = 25.10 -3 m; 1, 3, 5) calculation according to (4'); 2, 4, 6) calculation 

taking account of 6to. 

Results relating to the time interval from 1.5 sec to the end of the transient process should be recognized 

as fairly reliable. The numerical calculations and their comparison with experiment enable us to make the following 

conclusions: 

1. The laws of nonstationary convective heat transfer for the laminar flow of an incompressible liquid along 

a flat wall correspond to familiar theoretical and numerical solutions for stationary conditions, i.e., a quasi- 

stationary model is valid. The ratio of the thicknesses of the thermal and hydrodynamic boundary layers is 

determined by the Pr w number calculated using the wall temperature rather than the external flow temperature. 

Apparently, the reason is that qw in (2), which depends on the temperature gradient near the surface, depends 

weakly on the temperature distribution and hence on the Pr number in the middle layers and much less in the 

outer layers of the thermal boundary layer. 

2. In many cases of practical importance, solving the conjugate heat transfer problem in a one-dimensional 

formulation is safficient for calculating local nonstationary heat fluxes and temperatures on condition that 6 t be 

prescribed correctly. 

3. We can recommend an iteration method for engineering calculations of nonstationary heat transfer on 

a plate in the laminar flow of an incompressible liquid. Here, use should be made of expression (1) as a 

computational formula. Iterations are necessary because the Prandtl number is not known in advance since the 

nonstationary temperature of the surface is unknown. As a first approximation either the initial surface temperature 

or the flow temperature can be taken as the determining temperature for calculating Pr. In subsequent iterations 

it is necessary to take the current value of the surface temperature in the previous iteration as the determining 

temperature. The iteration process converges rapidly. 

4. Under the same hydrodynamic conditions the wall thickness and its thermophysical characteristics have 

an effect on the dynamics of variation of the surface temperature in accordance with the laws of heat conduction 

and hence influence nonstationary heat transfer via the Prw number. However, this influence should not be 
identified with the nonstationarity effect found in [5-7 ]. The influence of temperature nonstationarity on heat 

transfer noted in these works has a different physical nature and connected with the strong dependence of the 

density of the gas flowing along the surface on the temperature. 
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N O T A T I O N  

t, temperature, ~ x, y, z, coordinates, m; ax, local heat transfer coefficient, W/(m2.~ 2, thermal 
conductivity, W/(m-~ u| undisturbed flow velocity, m/sec; v, kinematic viscosity, m2/sec; Prw, Prandtl number 
calculated using the surface temperature; Proo, Prandtl number calculated using the undisturbed flow temperature; 
Ux, Uy, velocity components in the boundary layer, m/sec; qx, local density of the heat flux, W/m2; too, undisturbed 
flow temperature, ~ tw, surface temperature, ~ O, dimensionless temperature; r/, dimensionless coordinate; 
~lam, hydrodynamic boundary layer thickness, m; 6t, thermal boundary layer thickness, m; 6to, thermal boundary 
layer thickness at r -- O; h, thermal sensor thickness, m; r, time, sec. 
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